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ABSTRACT

The Radio Plasma Imager (RPI) is a low power radar on board the IMAGE spacecraft to be launched early in year
2000. The principal science objective of RPI is to characterize the plasma in the Earth’s magnetosphere by radio
frequency imaging. A key product of RPI is the plasmagram, a map of radio signal strength vs. echo delay-time
vs. frequency, on which magnetospheric structures appear as curves of varying intensity. Noise and other emissions
will also appear on RPI plasmagrams and when strong enough will obscure the radar echoes. RPI echoes from
the Earth’s magnetopause will be of particular importance since the magnetopause is the first region that the solar
wind impacts before producing geomagnetic storms. To aid in the analysis of RPI plasmagrams and find all echoes
from the Earth’s magnetopause, a computer program has been developed to automatically detect and enhance the
radar echoes. The technique presented is derived within a Bayesian framework and centers on the construction and
analysis of a Likelihood Function connecting magnetospheric structures and RPI plasmagrams. Once this technique
has been perfected on archival IMAGE data it will be recoded and used on board the IMAGE spacecraft in a series of
tests thereby greatly facilitating organizations like the National Oceanic and Atmospheric Administration’s (NOAA)
Space Environment Center (SEC) to perform real-time analysis of space weather.
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1. INTRODUCTION

The sun has been found to have a very dynamic and turbulent upper atmosphere that continually flows outward and is
called the solar wind. Enormous ejections of matter into the solar wind have been found to be the cause of a majority
of disturbances in the Earth’s magnetosphere, the magnetic region that protects the Earth. These disturbances are
called geomagnetic storms, the result of which can produce beautiful auroras as seen in Canada and the Northern
United States. But these storms also produce massive power outages and adversely affect a large number of orbiting
spacecraft, which perform a variety of telecommunication and global positioning functions. As our society grows
more dependent on spacecraft-based technology, it is imperative that we learn how to detect geomagnetic storms as
part of our space weather program.

NASA’s Imager for Magnetopause-to-Aurora Global Exploration (IMAGE)! has been designed to study the global
response of Earth’s magnetosphere to changes in the solar wind during its two-year mission in space. The satellite
carries some of the most sophisticated imaging instruments ever flown in near-Earth orbit and should be able to help
researchers predict space weather.

One way of accomplishing NASA’s strategic goals in space weather research is to develop techniques that will
provide rapid detection of major changes in the configuration of the magnetosphere caused by the solar wind. It is
well known that large variations in the solar wind produce significant geomagnetic storms. One must actually detect
the motion and deformation of the magnetopause in order to observe the solar wind energy that is actually received
at this boundary.

The IMAGE mission coincides with solar maximum, which is a period of intense solar activity that occurs every
1lyears. During solar maximum the Earth is continually buffeted by explosive eruptions of plasma from the Sun.
Researchers hope to gather significant information about the magnetosphere during this intense period of solar
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Figure 1. RPI plasmagrams showing the total signal power (left, Panel A) and the simulated echo power and magne-
tospheric feature identifications (right, Panel B). A plasmagram shows radio sounder echoes that map magnetospheric
density as a function of distance from the spacecraft.

activity. NOAA has made arrangement with NASA to receive the IMAGE data in real-time and use it their space
weather forecast center in Boulder, Colorado. NOAA’s Space Environment Center (SEC) is responsible for sending
out space weather alert to customers all over the world.

1.1. Radio Plasma Imager

One of the remote sensing instruments on IMAGE is designed to observe the structure and dynamics of the magneto-
spheric boundaries during geomagnetic storms using the Radio Plasma Imager or RPI. The RPI instrument consists
of a radio transmitter, receiver, and 3 axis antenna systems.? The RPI concept is based on radar, or radio sounding
techniques, to remotely measure plasma densities and motion.? The RPI uses frequencies from 3 kHz to 3 MHz that
will measure plasma densities from about 0.1 to 10% cm~3.

Just like a radar, RPI transmits short pulses of electromagnetic waves into the space plasma and detects the
reflected pulses. The RPI transmitted waves reflect at plasma cutoffs, where the index of refraction of the wave
becomes zero. The primary presentation of RPI data will be in the form of plasmagrams. A plasmagram is a color
coded plot of the power in an echo as a function of frequency and echo delay. A simulated plasmagram from ray
tracing calculations is shown in Fig. 1. Both plasmagrams in Fig. 1 are identical except that the plasmagram in
Panel A is the best representation of the RPI observations since it contains, in addition to the simulated echoes,
the measured RPI instrument noise level and the local thermal plasma emissions. Panel B of Fig. 1 shows only the
simulated echoes of Panel A. The RPI simulated echoes are presented in the form of echo time delay (t), expressed
in terms of apparent range (right scale), as a function of the sounder frequency (bottom scale). The apparent range
corresponds to ct/2 where c is the speed of light. The intensity is color-coded and has been calculated for each echo
in this figure.

The simulated echoes in panel B of Fig. 1 are labeled with their appropriate polarizations (right hand-extraordinary
or R-X and left hand-ordinary or L-O). The plasmagram contains the simulated echo measurements from a complete
RPI instrument cycle when the spacecraft is near apogee.

The key to understanding magnetospheric dynamics is in the analysis of the RPI echoes in Fig. 1. These echoes
must be extracted from the other magnetospheric emissions and the instrument noise background. Once the echo



traces are extracted information such as the distance and motion of the magnetopause can be determined. Currently
there is no automated process for performing this data extraction. In addition, if the magnetopause is moving rapidly
the pre-selected instrument mode may be such that the echo data is degraded beyond recognition. Only on board
analysis and instrument echo parameter changes would significantly improve the real-time RPI echo data under
certain circumstances.

1.2. Echo Extraction

The technique we use for the extraction of echoes is derived within a Bayesian framework because this allows us to
quantitatively assess evidence for magnetospheric signatures in the RPI data. Furthermore, this framework allows
the results of our analysis, which may be summarized as a posterior probability defined on the space of competing
hypotheses, to be used as a prior or base for further analysis. Conceptually, this framework fits well the needs of
space weather forecasting and nowcasting where the possible range of past, current, and future natural parameters
is more important than any single most favored value.

Bayesian approaches have achieved good results, particularly in applications with low signal-to-noise ratios (SNRs)
or sparse or missing data.*® These approaches are based on the Likelihood Principle which states that when making
inferences from observations, a probability density known as the likelihood function represents all the knowledge
we wish to bring to bear on the problem of connecting data with theory.”® By constructing a likelihood function
that connects echo models with RPI plasmagrams, we can take advantage of methods of reasoning with probabilities
to cast quantitative questions about our hypotheses. The key hypothesis we wish to test concerns the existence of
magnetopause echo power in plasmagram regions dominated by noise; such a region can be seen in Fig. 1 below ~ 7
kHz. The quantitative test we perform is a likelihood ratio test where we compare models with and without echo
power to construct odds for the hypothesis that echoes exist in the noise dominated region.

We now describe the process of extracting echo information from the plasmagram. The treatment of high
frequency signals is discussed first. Following that the echo trace model and the likelihood function are presented.
Then the application of the echo extraction to plasmagram data is presented. This paper concludes with remarks
about the future directions of this research.

2. TECHNIQUE

The fundamental goal of this work is to enable the detection of magnetopause signatures in RPI data in the presence
of strong interference. A first step towards this goal is to extract signatures of echo traces from the plasmagram. To
reduce the dimensionality of the problem and thereby facilitate the solution’s implementation and performance we
treat strong and weak echoes differently. Strong echoes are easily discernable against the background noise; weak
echoes are not. For the present calculation, we note that the high frequency portion of a magnetopause echo trace
is easily discernable. For lower frequencies we construct a likelihood function that describes the RPI output and
plasmagram echo traces.

2.1. The case of strong signals

In the strong signal region, signal detection can be achieved using simple thresholding. In our implementation,
suitable low-noise frequencies are chosen and searched; echo candidates are identified by SNRs greater than an
arbitrary threshold, here 5. Once identified, a simple notion of continuity is used to trace the echo through adjacent
frequencies. Identified echoes that are within user given time-delay and frequency tolerances of each other are
considered to be part of the same echo trace.

Once an entire set of echo traces has been collected, the trace is searched for branches; these show up as multiple
echoes occuring on the same frequency. These branches are then broken into single valued subtraces, which are then
pieced back together to form a set of traces, each element of which is single valued in time-delay and have the correct
high frequency behavior. Thus an echo trace that has low frequency R-X and L-O wave branches is identified and
stored as two traces which share the same high frequency branch but differ at the low frequencies. In this way, we
identify all echo traces meeting provided degrees of time-delay/frequency continuity and signal strength.

Figure 2 shows an example of how these identifications are used. In this portion of a plasmagram, points from
a strong echo trace have been chosen as control points for a spline model. From our ray tracing models of RPI
sounding, we expect that this echo trace might extend to lower frequencies (compare Panels B of Figs. 1 and 2).
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Figure 2. The signal-to-noise ratio at low frequencies (A), and detail from an IMAGE/RPI plasmagram (B).
Displayed is the observed power log;, S overplotted by the spline-based model S (see Sect. 2.2.1 for details on S and
5) The large box in the upper left outlines the region of strong natural noise emissions that we wish to search for
evidence of RPI echoes; the SNR in this region is plotted in Panel A. We search this data for continuations of the

high signal-to-noise echo visible and marked between 7 and 52 kHz.

However the comparitively strong noise at low frequencies obscures the trace. Figure 2 (A) shows an example of the
SNR for low frequencies. In this figure, data outside the range 1/3 <SNR< 3 are truncated to the lower and upper
bounds. This figure effectively demonstrates that in this region of the plasmagram the signal is hidden from visual
inspection by the noise.

2.2. Model based approach

A quantitative model is required to make quantitative assessments of the existence of echo power. Above ~7.5 kHz
the echo power is strong enough that we may be somewhat cavalier in the formation of our model. Below ~7.5
kHz, we must be more careful because the SNR is very small (Fig. 2). From instrument tests, the RPI’s response to
an input signal was observed to be reasonably well described by a Poisson density about a mean (digitized) signal
power. Proceeding from this observation, we can construct a likelihood function that models the probability that a
particular data set will be obtained given a particular input power. Our certainty that echoes exist can then be cast
as a probability within the Bayesian framework; the likelihood function is to be interpreted within this framework.

Bayes’ rule provides a framework for combining models, data, and one’s a priori expectations to help draw
conclusions:

likelihood x prior _ p(S|SI)p(S|I)
evidence — p(S|)

p(SIST) =

The approach used here is based on the work of Loredo.® The symbol I denotes the specific context defined by the
models of the situation. It stands for the information required to describe the modeled physical situation, e.g. the
distributions used, the physics involved, and other meta-model information. Different models are labeled via I and
compared using standard probabilistic methods.

The posterior probability p(S|ST) is the measure of one’s confidence that a particular hypothesis or set of param-
eters S describes the reality within which the data S was obtained. In this paper, tildes (*) denote model quantities;
many quantities are implicitly functions of time (echo delay time or apparent range) and frequency; these relations
will be made explicit when necessary.

The likelihood p(S|ST) is the model that connects experimental observations to parameters associated with
important features of the physical world. It is one’s certainty that the data set S would be obtained when the
physical situation ST prevails. The variable parameters that determine the nature of the physical system are denoted
by S.

Finally, a priori information is written as p(S|I) and can include information S from previous experiments as
well as an educated guess. One popular method of determining priors has been to try to minimize their information



content and hence their impact on the final analysis. This is the basis of the Maximum Entropy Method.® In the
present work, only the likelihood or likelihood ratios are used while we neglect (explicit) priors. Hence the evidence
or marginal density p(S|I), which acts as a normalization constant and depends on the prior, is neither available nor
required.5”

2.2.1. Instrument and signal model

In this section we present the model of the RPI echoes. This model was developed independently of the models used
to construct the simulated plasmagram shown in Fig. 1. Beyond the observation of Poisson statistics there is little
physics involved in the model developed here. Instead, the basic assumption is that echo traces on plasmagrams
can be described as relatively continuous arcs. Detailed models based on other more physical models of the Earth’s
magnetosphere can be handled in a way similar to what is presented here, but such modelling is beyond the scope
of the present work.

Within the context of RPI, we assume the signal and noise to be additive
g = Z g:c = ~echo + gnoise;
T

where x covers the domain of phenomena that add to the RPI response. Here z is restricted to echo and noise
power. The echo trace is factored into portions responsible for the echo strength W, and apparent range Cecpo as
functions of frequency f: 3

Secho = Wecho Cecho-

Weeno has units of power or energy as appropriate and Cecp, is dimensionless. After examining several different
forms, the form of the echo strength is a log-log-polynomial with coefficients n;’:

2

InWeeho =1n Wecho(f) = Z Tl}cu (ln f)k :

k=0

The form of the apparent range is

10 Cocho = InCoeno(t, ) = —a (t —i(f))” .

The parameter a is the reciprocal width of the modeled echo trace, and for the work here a is set so that the model
traces are not resolved in time. Here and hereafter times ¢ are presented as apparent ranges measured in Earth radii.
The maxima of Cecp, occur when the right hand side of the previous equation is zero. The locations of these zeros
as functions of frequency are given by

#(f) = Spliney, (1§, In f).
The notation “Spliney, (n§,1n f)” denotes the spline function through the N¢ points 7{, n$, up to n%.; the domain of
the function is In f. For the implementation used, the model parameters nf are the spline’s control points (tx, fx).
We typically used cubic splines to control the model’s echo return time. Thus the parameters which define this model
echo trace are 7ecno = {{1} }i=o, {7 Hec1s a}-
The noise model is written ~
Snoise = Whnoise = Wnoise (f)7

where W, 4;se is only a function of frequency for this work, but could be a more general function. For most purposes,
Wioise can be determined during passive RPI observations. For consistency with the echo model, we write the
parameters that define the noise model as 7),0i5¢; in this case we can simply take Wioise (f) = Tnoise (f), independent
of time. On the other hand, if the noise environment has more structure in time (and frequency) we can include
these affects in our models at the expense of increasing the dimensionality of the model parameter space. With
suitable prior information the technique of marginalizing such extra parameters can help limit the dimensionality of
the problem.



2.2.2. Likelihood function

Since the RPI output appears adequately modeled by Poisson densities, the Poisson density can model low strength
digitized signals and approaches Gaussian statistics for high strength signals. The observations of RPI output are
analog-to-digital (A /D) digitizer output, written as Sdt, above some prescribed minimum average power and arriving
in a time interval §t. For this work we suppose that the prescribed minimum is set so that the background noise
power input causes the digitizer to emit Sét = 3, independent of frequency. Parenthetically, in this work Sdt is
real valued, not integer valued.* It is expected that new models will be constructed to adequately describe RPI
observations once it is in orbit.

The model connecting observed data with physical parameters is the likelihood:
(St)Sot o(—54t) (3, Sa0t)5% e~ >, Saot

p(SISI) = Sot)l (S51)!

The duration of a given observation §t can be a function of time and frequency and is absorbed into the signal and
noise powers in what follows. It is more convienent to work with the log-likelihood:

Inp(S|SI) =SS -5 —In(S) ~ —Sln% -5,

where Stirling’s approximation has been used.

The signals are measured and modeled on a set of discrete times and frequencies, here denoted as a set of
elements tf. If we take the statistics of measurements obtained at different ¢f to be independent, we can write the
log-likelihood as

Inp(S|SI) = Zlnp(stﬂgtfl)'
tf

For this work we neglect priors, normalization and deal only with the log-likelihood, In p(S|SI):

Inp(S|SI) =
= In p(S|necho, Nnoises I)

-> (Stf In 24 +5‘tf) (1)
Sty

tf t

Q

where S, § = S, #(Nechos Mnoise). Equation (1) is the foundation of our method. A Maximum Likelihood (ML)
approach would entail a search for the maximum of Eq. (1). The analyses presented below are not strict ML
approaches. Instead, we present convenient maps of the likelihood that show where RPI echo traces may be hidden
in noisy data. Within the Bayesian framework, we would multiply the likelihood by an a priori density to obtain the
posterior density which would then summarize our quantitative conclusions. Therefore, the likelihoods presented are
proportional to the posteriors and can likewise show which parameters, and hence models, are favored by the data.

3. APPLICATION TO MODELED IMAGE/RPI DATA
3.1. The case of strong signals

As mentioned above, the echo power at higher frequencies does not require special analysis; echo traces with strong
SNRs are readily extracted from the data (Sect. 2.1). In fact, we use the high SNR data available above ~ 7.5
kHz to aid in the recovery of the low SNR data below that frequency. A convenient representation is obtained if
we allow only the parameters determining the low frequency endpoint of the model echo trace to vary; all other
parameters are set to values determined from the high SNR data. If the spline control parameters 75 = (tx, fx) are
ordered by increasing frequency, then nf = (1, f1) will be the low frequency endpoint of the model echo trace and
the only parameters allowed to vary. We determine the form of the echo power necho, i-. {n¥}i_,, from the high
SNR data and hold these values fixed for the low SNR data. We have set W45 by time-averaging data that does

*Results of tests with integer valued measurements St do not differ qualitatively from what is presented here.
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Figure 3. The likelihood-ratio: Odds that the RPI input contains echo+noise vs. solely noise. Possible echo traces
are labeled A and B for comparison with figures below. The gray scales shown here are truncated below and above
odds of 1/3 and 3 respectively.
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Figure 4. The actual signal-to-noise ratio calculated from the echo and noise power models used to construct the
plasmagram. Note the location of the ridges of high likelihood labeled A and B in figure 3 are coincident with actual
signals, some with SNR< 1.
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Figure 5. The odds ratio with the echo signatures artificially removed from the data. This test shows that the
likelihood approach is actually sensitive to the presence of the weak echoes and is not serendipitously matching the
traces.

not contain echoes. This is likely adequate for present purposes because noise environment will likely change slowly
during observations at any one frequency.

The likelihood mapped as a function of time-delay and frequency, 1§, resembles a filtered plasmagram, a feature
that greatly aids interpretation. Therefore, aside from the endpoint 7§, all parameters defining the echo and noise
components of the signal are determined from the high SNR data or during echo-free observations.

3.2. Application to low frequency data

Figure 2 shows that simple methods of signal detection based on estimated SNRs do not provide much information
for very weak signals. With the likelihood based method, echo detections appear as enhancements in regions of
favored parameters. Furthermore, because of our probabilistic interpretation, we can calculate the odds that a given
input signal is composed of echo+noise power or solely noise power. To calculate this odds, we form the ratio of the
likelihood with to that without echo power. This is essentially a Bayesian model comparison. Finally, by forming
the ratio of the odds to the SNR we obtain a rough and ready gauge of the SNR enhancement possible with this
technique.

Figures 3 through 7 summarize the effectiveness of our method for this model problem. In this case the trace
to be found is the upper branch of the magnetopause echo. Figure 3 shows the likelihood-based odds ratio. Data
outside the range 1/3 to 3 have their gray scales truncated. The application of our method dramatically shows where
evidence supporting the model is to be found. We have thus found evidence for echo traces whose SNRs are below
one (Fig. 4). It is natural to be concerned about the reality of these detections.

To gauge the trustworthiness of these detections, we artificially removed the signal and repeated our calculations
with only noise power existing below ~ 7.5 kHz. The results are presented in Fig. 5 where detections are to be
considered as false positives. If the method were merely fitting the noise, then the structures visibile in Fig. 3 should
still be apparent. Therefore, we conclude that our method’s rate of false positives is low and its signal to noise
enhancement can detect a certain class of signals with SNR< 1.

3.3. Benefit of the method

As mentioned above, a simple way to gauge the benefit of this technique is to form an effective SNR enhancement
factor from the odds and the SNR. We do not claim that this estimate is an optimal measure of the risks of this
method, but it is convenient and suits our present purpose. From this viewpoint, Fig. 6 shows the estimated



enhancement in the SNR that our method provides over the plasmagram data. Figure 7 shows how SNR data points
are mapped to odds. The large effective enhancements for regions of strong echo power (e.g. trace B) in such noisy
data may lead to the identification of physical phenomena that would otherwise be missed. An additional important
benefit is the identification of regions of less, but non-negligible odds (e.g. trace A) which may also point to important
but hard to detect magnetospheric structures.

3.4. Computational performance

Though the current implementation is an experiment in feature extraction, a few words about the current optimization
state of the code are appropriate because the IMAGE spacecraft is a prospective target platform for these or similar
feature extraction functions. A likelihood ratio map such as Fig. 3 takes about 30 minutes to produce on a Digital
166 MHz Pentium MMX system with 144 MB of memory running Red Hat Linux (5.2). The current implementation
is written in Research System Incorporated’s Interactive Data Language (IDL) which is byte-compiled, interpreted,
and has an extensive library of tuned object code. The IDL implementation of our method is in no sense optimally
fast, but with sufficient effort, the efficiency of this method can likely be increased by a factors tens or more. Sources
of optimization include algebraic simplifications of the underlying likelihood ratios, inlining of function calls, and
recoding to make use of an optimizing compiler. The use of integer instead of floating point operations may enhance
efficiency as well. Furthermore, a dynamically adaptive algorithm that concentrates compute resources on more likely
regions of parameter space would be less computationally expensive than the grid based searches presented here.
The excellent performance of this method at extracting echoes and its adaptability to other probabilistic analyses
prompts us to seek ways to overcome the challenge of developing an on board implementation.

4. CONCLUSIONS

This paper provides evidence that useful information can be extracted from RPI simulation data that is apparently
dominated by noise. This information extraction is possible because (1) the echo traces place a sufficient mark on
the data and (2) the likelihood model describing the plasmagram data is sufficiently accurate. If either of these
two features were lacking, then the performance of this method would be reduced. Furthermore, the use of the
strong echo data reduces the effective dimensionality of the parameter space on which the likelihood is defined.
The method’s ability to extract echo traces exhibited in this paper is likely better than will be obtained during the
method’s application to RPI operations because the echo and noise models will likely require more parameters to
describe reality less well.

Fortunately, we have so far found this method of analysis surprisingly robust to inadequacies or even errors in
the model. For example, during one set of runs the echo and noise power levels were wrongly set a factor of nine too
low. The SNR was still correct, but the probability densities describing the expected response of the instrument were
quite far off. Still, the method returned qualitatively similar results: the main difference being a much less dramatic
response of the method to echo trace B.

4.1. Including improved models

During RPI operations, we expect to take better advantage of our understanding of the instrument, its environment,
and the interaction of the two. A straightforward extension of the echo extraction method would be the inclusion
of knowledge about the location of magnetospheric structures via prior probabilities (Sect. 2.2). These priors could
be constructed from archived or current spacecraft data and/or models coupling indicators such as the Disturbed
Storm-Time index (DST)!'° to magnetospheric structure location.

Also in the current work, we have not taken advantage of important information about the instrument. For
example, our results here used model data for only one of RPI’s antenna-receiver subsystems. RPI contains two other
such subsystems and an operational version of our analysis would include a model describing all three subsystems
and their response. Likelihood analyses using all three subsystems will likely outperform analyses using only one.

4.2. The next step

The technique discussed provides the ability to automate the extraction of echoes from the natural noise and in-
strument background. Once these echoes have been identified in the data then, to a first order approximation, the
distance to the target (the magnetopause in this case) can simply be calculated as R = c¢t/2, where R is the distance
(in km), ¢ the speed of light (in km/sec), and ¢ the total time of the echo (in sec). With the long three-axis RPI
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of the SNR improvement possible for regions with weak signals, provided the appropriate models are available. When
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antennas on IMAGE the direction of arrival can also be calculated. It is expected that the echo extraction, range
calculation, and direction of arrival will be calculated on board IMAGE and telemetered to the ground to use by
NOAA’s SEC. These telemetered results will then be used to infer magnetospheric structure and to generate space
weather alerts.

At the time of this writing the IMAGE mission has not yet been launched and this analysis has been done with
simulated data using all measured RPI instrument characteristics. Once RPI becomes operational, approximately
40 days after launch, this technique will be applied to the archival data then re-coded and loaded onto the on board
computers on IMAGE. As noted above, we have identified a number of ways in which the efficiency of the present
implementation can be greatly enhanced, thereby enabling on board echo extraction. It is expected that the first
end to end test of this type of space weather alert will occur after the main mission of IMAGE has been completed
(April 2002).

4.3. Application to Space Weather research

One way of accomplishing NASA’s strategic goals in Space Weather research is to develop techniques that will provide
rapid detection of major changes in the configuration of the magnetosphere by the solar wind. It is well known that
large variations in the solar wind produce significant geomagnetic storms, but solar wind measurements alone are
not always enough to predict these storms. The deformation and motion of the Earth’s magnetopause are major
components of the structure and behavior of the magnetosphere. Therefore measurements of the magnetopause are
critical to our understanding and prediction of mangetospheric phenomena. The RPI instrument is a highly flexible
multi-mode instrument designed to extract by remote sensing the signatures of the magnetopause and other major
magnetospheric boundaries and plasmas. The first instrument of its kind flown to illuminate the magnetosphere, RPI
will provide a new and unique view of magnetospheric dynamics. The goal of this research is to develop techniques
for the on-board analysis of RPI echoes from the magnetopause in real-time that can be used by NOAA’s SEC for
generating space weather alerts. The first step in this process, the extraction of echoes from RPI data using simulated
data, has been completed.
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