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Abstract

The Radio Plasma Imager (RPI) is a low power radar on board the

IMAGE spacecraft to be launched early in year 2000. The principal
science objective of RPI is to characterize the plasma in the Earth’s
magnetosphere by radio frequency imaging. A key product of RPI is the
Plasmagram, a map of radio signal strength vs. echo delay-time vs.
frequency, on which magnetospheric structures appear as curves of
varying intensity. Noise and other emissions will also appear on RPI
Plasmagrams and when strong enough will obscure the radar echoes. To
aid in the analysis of RPI plasmagrams, a computer program is being
implemented to automatically detect and enhance the radar echoes. The
techniques used are derived within a Bayesian framework and include
Maximum Likelihood and Maximum Posterior analyses. A heuristic
stochastic global optimization method blending elements of simulated
annealing and genetic algorithms is used to determine what model
echoes are supported by plasmagram evidence. The application of this
work to RPI data will be discussed.




Outline of this Presentation

This presentation is organized into six vertical display tracks:
1. Introductory track (this track),
2. Background on IMAGE/RPI,
. High signal-to-noise detection,
. Low signal-to-noise detection (derivation),
5. Low signal-to-noise detection (results), and

. Conclusion.




Overview of the method

Our approach to RPI signal detection and enhancement is to:

1. Use simple thresholding to acquire high signal-to-noise (SNR)
echoes;

. Use high SNR data as the starting point for low SNR

modelling;
. Use noise and signal models built within a Bayesian framework;

. Identify regions of model parameter space that suggest

detections.

The Bayesian framework provides a disciplined way to reason about
constraints, models, and data. Questions such as “What are the
most likely or probable model-based situations given observations?”

can be posed as optimization problems within the framework.




Radio Plasma Imager
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IMAGE/Radio Plasma Imager (RPI)

IMAGE/RPI is designed to obtain a global profile of the

magnetospheric density from the magnetopause to the ionosphere.
e Frequencies: 3 kHz to 3 MHz; Plasma Densities: 10 to 10°/cc
Two crossed 500m tip-to-tip thin wire dipoles (spin plane)
One 20m tip-to-tip thine wire dipole (spin axis)
10 W peak power, 3 kV max. antenna voltage
On board processing for enhancement of signal-to-noise

A relative of Digisonde Portable Sounder developed at
University of Massachusetts, Lowell (Reinisch et al. 1992).




Radio Sounding

Modeled IMAGE RPI Plasmagram
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Sources of interference

e Solar-Heliospheric

e.g. Type III bursts and storms

e Terrestrial Magnetospheric
Auroral kilometric radiation

Trapped and escaping continuum radiation
e Astronomical
e Instrumental & In situ plasma emission

Note: The current work is by no means the first line of mitigation
for these noise sources. Principal techniques built into RPI’s data
control system include signal processing, frequency control, and

polarization and spatial discrimination (cf. Green et al. 1997).
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Figure 1: Radio observations by WAVES on the Wind spacecraft.
Emissions such as these will be observed by RPI.

http://lep694.gsfc.nasa.gov/waves/waves.html, M. L. Kaiser, author.




Analysis at High Signal-to-Noise Ratios

At high signal to noise ratios, we can be confident that a detection
has occured. We have implemented the following simple scheme to
automatically trace linear features that occur in RPI plasmagram
data.

1. Estimate noise floor from histogram.
. List datapoints that exceed a desired, fixed SNR.
. Construct lists of data points that form contiguous traces.
. Search for multiple peaks in time as a sign of branching.
. Construct a set of single valued echo traces for further analysis.

At this point individual traces can be treated as individual

datapoints.




High signal-to-noise ratio trace extraction
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Example usage: Automated model fitting

Once individual traces have been extracted, we can fit models to

them. A two step process has proven efficient and reliable:
1. Fit the strength of the trace as a function of frequency;

2. Then fit the “delay time” behavior of the trace.

We factor the echo trace into a portions responsible for the echo
strength W,.,, and apparent range C..,, as functions of frequency

f.

~

Secho — Wecho Cecho

After examining several different forms, the form of echo strength

used here is a log-log-polynomial:

In Wecho = In Wecho(f) — an (ln f)k .
k




The form of the apparent range is

InCecho = nCocto(t, f) = —a Y (t—1;)" .
j
The parameter a is the reciprocal width of the modeled echo trace,
and for the work here a is set so that the model traces are not
resolved in time. Times are presented as apparent ranges measured
in Earth radii. The maxima of C..p, 0occur when the left hand side
of the previous equation is zero. The locations of these zeros are

governed by

t; = t;(f) = Spliney, (n,%,In f).

We typically used cubic splines to control the model’s echo return

time. For the implementation used the model parameters 7, are
the points through which the spline passes.




A fit to high SNR data

Hi—frequency model overlayed on data

The signal strength depicted above is in counts that only roughly reflect actual RPI values.




Dealing with interference

Our approach is based on Bayes’ rule (e.g. O Ruanaidh and
Fitzgerald 1996):

likelihood x prior  p(S|SI)p(S|I)
evidence B p(S|T)

p(S|SI) =

which prescribes a way to combine models, data, and one’s a prior:

expectations.

The model connecting observed data with physical parameters is
the likelihood:

B 3 (55t)S% o(—55t) (3. S.0t)5% ¢~ Y. St
=pSIST) = gy = (S5t)]

These forms arise when the signal statistics are adequately modeled
by a Poisson distribution, which is the observed case for RPI data.




Signal4+Noise?

We have assumed the signal and noise to be additive

S — Z SCIZ — gecho + gnoise-

The noise model is written

Snoise — notse — noise(f)a

where W, ,:se 1s only a function of frequency for this work, but
could be a more general function. For most purposes, W, .ise can be
determined during passive RPI observations. For example, we have

set Wioise Dy time-averaging data that does not contain echoes.

2The duration of a given observation dt is a function of time and frequency

and is absorbed into the signal and noise powers.




Log-likelihood

It is more convienent to work with the log-likelihood:

Inl =Inp(S|SI)=SInS -85 —In(9)! ~ —Sln% - S.

Signals are measured and modeled on a set of discrete times and
frequencies, here denoted as a set of elements tf. If we take the
statistics of measurements obtained at different ¢f to be

independent, we can write the log-likelihood as

Inl=1Inp(S|SI) =Y Inp(Sif|SesI).
tf




For this work we neglect priors, normalization and deal only with
the log-likelihood, In p(S|ST):

Inl = Inp(S|SI)
= In p(S|’I7€cho, WechOa Wnoisea I)

—Z <stf1n—+stf> (1)

where S*tf = gtf(necho, Weecho, Whoise). Equation 1 is the
foundation of our method. A Maximum Likelihood (ML) approach
would entail a search for the maximum of equation 1. A more
complete picture of the information contained in the data can be
obtained by examining the log-likelihood itself. We have done this
by holding those parameters determined during the high SNR
analysis fixed while allowing only the delay-frequency position of

the low frequency endpoint of the trace to vary.




Likelihood of detection

Negative Log Likelihood (No signal) Negative Log Likelihood
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On the left, the signal has been artificially removed. Note how the
log-likelihood can change in the presence of a signal.




Extension of the Magnetopause trace

Model 1 overlayed on data, box: (5.2,4.3) Model 1 compared with echo, box: (5.2,4.3)
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The box at (5.2,4.3) above shows the endpoint which is also the two-dimensional parameter varied

to construct the maps of the log-likelihood.




Interpretation of the reconstruction

This model reconstruction is based on parameters from the light
green plain to the immediate left of the black pits visible in the
log-likelihood. The black pits correspond to the stronger echoes
immediately to the right of the displayed reconstruction.

Within the context of our simple signal4+noise model, the data
support multiple reconstructions as seen by the multiple local

minima of the likelihood.

For operational use, more complicated and perhaps physics-based
models that support multiple traces would use more completely the

information available in the data.




Genetic Algorithmic approach to
optimization

As stated in the abstract, we implemented a program that
attempts to minimize the log-likelihood as a function the entire

parameter space, 1, Wecho, and Wioise-

We found this algorithm excessively good at finding minima of the
log-likelihood that had no physical significance. From this we
realized that local minima and features appearing in log-likelihood
space often have as much or more relevance than global minima.
Better behavior will likely be brought out by better models and
physically based constraints.

Before more fully exploring these avenues, we have focussed our
efforts developing the methods presented here.




Conclusion and Plans

We have developed programs that automatically:
1. Trace, segment, and label high quality RPI echoes;
2. Assess the likelihood for RPI signal detection in extreme noise;
3. Perform 1 and 2 to provide a list of likely RPI echo detections.

Plans: The models used in this work are simple and lack features
required for operational use. Currently echo reconstructions are
based on simple notions of continuity in time and frequency and
spline approximation. Feature detection in likelihood space, priors
and heuristics based on the magnetospheric phenomenology, and an
empirical understanding of the performance of RPI on orbit are

elements of a more complete solution.
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